54 research outputs found

    Dermatology undergraduate skin cancer training: a disconnect between recommendations, clinical exposure and competence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skin cancers are the most common malignancies in Caucasian populations. Non-specialists are responsible for the initial assessment of skin lesions and are required to act as the gatekeepers to dermatological cancer services in many healthcare systems. The majority of such physicians receive very limited formal undergraduate or postgraduate dermatology training. The British Association of Dermatologists (BAD) has produced guidelines that list the lesions that students should be able to diagnose on graduation and the majority of UK medical schools’ operate curricula in keeping with these. There is, however, virtually no evidence as to whether these competencies are being achieved. We set out to determine students’ competence at skin lesion diagnosis and to quantify their clinical exposure to examples of such lesions during their dermatology attachment.</p> <p>Methods</p> <p>Three linked studies were undertaken. In the first, students’ competence was tested by randomized slideshows of images containing the 16 lesions recommended in the UK guidelines. Students’ accuracy was tested at the beginning (Day 1) and end (Day 10) of their clinical placement, with a random sample of students retested 12 months later. Secondly, students’ exposure to these lesions was recorded during their attachments. Finally a survey of the additional dermatological resources used by the students was undertaken.</p> <p>Results</p> <p>Study 1: Students’ diagnostic accuracy increased from 11% on Day 1 to 33% on Day 10 (effect size +2.72). After 12 months half of this effect had disappeared and the students accuracy had dropped to 24%. Study 2: Students’ exposure to the recommended lesions was poor with 82% not even witnessing a single example of each of the 3 major skin cancers. Despite these measurements, only a minority of students reported that they were not confident at diagnosing skin tumours. Study 3: The majority of students use additional resources to supplement their learning.</p> <p>Conclusions</p> <p>In the light of what we know about learning in dermatology, our data would suggest, that the current (traditional) undergraduate attachment is inadequate to meet the UK recommendations for graduate competence. As well as critically examining the basis for these recommendations, we need more empirical data on student performance and exposure, in order to improve teaching and learning.</p

    Utility of Non-rule-based Visual Matching as a Strategy to Allow Novices to Achieve Skin Lesion Diagnosis

    Get PDF
    Non-analytical reasoning is thought to play a key role in dermatology diagnosis. Considering its potential importance, surprisingly little work has been done to research whether similar identification processes can be supported in non-experts. We describe here a prototype diagnostic support software, which we have used to examine the ability of medical students (at the beginning and end of a dermatology attachment) and lay volunteers, to diagnose 12 images of common skin lesions. Overall, the non-experts using the software had a diagnostic accuracy of 98% (923/936) compared with 33% for the control group (215/648) (Wilcoxon p < 0.0001). We have demonstrated, within the constraints of a simplified clinical model, that novices’ diagnostic scores are significantly increased by the use of a structured image database coupled with matching of index and referent images. The novices achieve this high degree of accuracy without any use of explicit definitions of likeness or rule-based strategies

    Novice identification of melanoma:not quite as straightforward as the ABCDs

    Get PDF
    The “ABCD” mnemonic to assist non-experts’ diagnosis of melanoma is widely promoted; however, there are good reasons to be sceptical about public education strategies based on analytical, rule-based approaches – such as ABCD (i.e. Asymmetry, Border Irregularity, Colour Uniformity and Diameter). Evidence suggests that accurate diagnosis of skin lesions is achieved predominately through non-analytical pattern recognition (via training examples) and not by rule-based algorithms. If the ABCD are to function as a useful public education tool they must be used reliably by untrained novices, with low inter-observer and intra-diagnosis variation, but with maximal inter-diagnosis differences. The three subjective properties (the ABCs of the ABCD) were investigated experimentally: 33 laypersons scored 40 randomly selected lesions (10 lesions × 4 diagnoses: benign naevi, dysplastic naevi, melanomas, seborrhoeic keratoses) for the three properties on visual analogue scales. The results (n=3,960) suggest that novices cannot use the ABCs reliably to discern benign from malignant lesions

    Estimation of Breast Cancer Incident Cases and Medical Care Costs Attributable to Alcohol Consumption Among Insured Women Aged <45 Years in the U.S.

    Get PDF
    This study estimated the percentage of breast cancer cases, total number of incident cases, and total annual medical care costs attributable to alcohol consumption among insured younger women (aged 18–44 years) by type of insurance and stage at diagnosis

    Subcellular Min Oscillations as a Single-Cell Reporter of the Action of Polycations, Protamine, and Gentamicin on Escherichia coli

    Get PDF
    BACKGROUND: In Escherichia coli, MinD-GFP fusion proteins show rapid pole to pole oscillations. The objective was to investigate the effects of extracellular cations on the subcellular oscillation of cytoplasmic MinD within Escherichia coli. METHODOLOGY/PRINCIPAL FINDINGS: We exposed bacteria to the extracellular cations Ca(++), Mg(++), the cationic antimicrobial peptide (CAP) protamine, and the cationic aminoglycoside gentamicin. We found rapid and substantial increases in the average MinD oscillation periods in the presence of any of these polyvalent cations. For Ca(++) and Mg(++) the increases in period were transient, even with a constant extracellular concentration, while increases in period for protamine or gentamicin were apparently irreversible. We also found striking interdependence in the action of the small cations with protamine or gentamicin, distorted oscillations under the action of intermediate levels of gentamicin and Ca(++), and reversible freezing of the Min oscillation at high cationic concentrations. CONCLUSIONS/SIGNIFICANCE: Intracellular Min oscillations provide a fast single-cell reporter of bacterial response to extracellular polycations, which can be explained by the penetration of polycations into cells

    Dermoscopy, with and without visual inspection, for the diagnosis of melanoma in adults

    Get PDF
    Background: Melanoma has one of the fastest rising incidence rates of any cancer. It accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Although history-taking and visual inspection of a suspicious lesion by a clinician are usually the first in a series of ‘tests’ to diagnose skin cancer, dermoscopy has become an important tool to assist diagnosis by specialist clinicians and is increasingly used in primary care settings. Dermoscopy is a magnification technique using visible light that allows more detailed examination of the skin compared to examination by the naked eye alone. Establishing the additive value of dermoscopy over and above visual inspection alone across a range of observers and settings is critical to understanding its contribution for the diagnosis of melanoma and to future understanding of the potential role of the growing number of other highresolution image analysis techniques. Objectives: To determine the diagnostic accuracy of dermoscopy for the detection of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants in adults, and to compare its accuracy with that of visual inspection alone. Studies were separated according to whether the diagnosis was recorded face-to-face (in-person) or based on remote (image-based) assessment. Search methods: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. Selection criteria: Studies of any design that evaluated dermoscopy in adults with lesions suspicious for melanoma, compared with a reference standard of either histological confirmation or clinical follow-up. Data on the accuracy of visual inspection, to allow comparisons of tests, was included only if reported in the included studies of dermoscopy. Data collection and analysis: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated accuracy using hierarchical summary ROC methods. Analysis of studies allowing direct comparison between tests was undertaken. To facilitate interpretation of results, we computed values of sensitivity at the point on the SROC curve with 80% fixed specificity and values of specificity with 80% fixed sensitivity. We investigated the impact of in-person test interpretation; use of a purposely developed algorithm to assist diagnosis; observer expertise; and dermoscopy training. Main results: A total of 104 study publications reporting on 103 study cohorts with 42,788 lesions (including 5700 cases) were included, providing 354 datasets for dermoscopy. The risk of bias was mainly low for the index test and reference standard domains and mainly high or unclear for participant selection and participant flow. Concerns regarding the applicability of study findings were largely scored as ‘High’ concern in three of four domains assessed. Selective participant recruitment, lack of reproducibility of diagnostic thresholds and lack of detail on observer expertise were particularly problematic. The accuracy of dermoscopy for the detection of invasive melanoma or atypical intraepidermal melanocytic variants was reported in 86 datasets; 26 for evaluations conducted in-person (dermoscopy added to visual inspection) and 60 for image-based evaluations (diagnosis based on interpretation of dermoscopic images). Analyses of studies by prior testing revealed no obvious effect on accuracy; analyses were hampered by the lack of studies in primary care, lack of relevant information and the restricted inclusion of lesions selected for biopsy or excision. Accuracy was higher for in-person diagnosis compared to image-based evaluations (relative diagnostic odds ratio (RDOR) of 4.6; 95% CI 2.4, 9.0, P<0.001). Accuracy was compared for (a) in-person evaluations of dermoscopy (26 evaluations; 23,169 lesions and 1664 melanomas) versus visual inspection alone (13 evaluations; 6740 lesions and 459 melanomas) and for (b) image-based evaluations of dermoscopy (60 evaluations; 13,475 lesions and 2851 melanomas) versus image-based visual inspection (11 evaluations; 1740 lesions and 305 melanomas). For both comparisons, meta-analysis found dermoscopy to be more accurate than visual inspection alone, with RDORs of (a) 4.7 (95% CI: 3.0 to 7.5; P < 0.001) and (b) 5.6 (95% CI: 3.7 to 8.5; P < 0.001). These effects correspond to predicted differences in sensitivity of (a) 16% (95% CI: 8%, 23%) (92% for dermoscopy+visual inspection vs 76% for visual inspection) and (b) 35% (95% CI 24% to 46%) (81% for dermoscopy vs 47% for visual inspection) at a fixed specificity of 80%; and topredicted differences in specificity of (a) 20% (95% CI 7%, 33) (95% for dermoscopy plus visual inspection vs 75% for visual inspection) and (b) 40% (95% CI 27, 57) (82% for dermoscopy vs 42% for visual inspection) at a fixed sensitivity of 80%. Using the median prevalence of disease in each set of studies ((a) 12% for in-person and (b) 24% for image-based) for a hypothetical population of 1000 lesions, an increase in sensitivity of (a) 16% (in-person) and (b) 35% (image-based) from using dermoscopy at a fixed specificity of 80% equates to a reduction in the number of melanomas missed of (a) 19 and (b) 81 with (a) 176 and (b) 152 false positive results. An increase in specificity of (a) 20% (in-person) and (b) 40% (image-based) at a fixed sensitivity of 80% equates to a reduction in the number of unnecessary excisions from using dermoscopy of (a) 176 and (b) 304 with (a) 24 and (b) 48 melanomas missed. The use of a named or published algorithm to assist dermoscopy interpretation (as opposed to no reported algorithm or reported use of pattern analysis) had no significant impact on accuracy either for in-person (RDOR 1.4, 95% CI 0.34, 5.6; P=0.17) or image-based (RDOR 1.4, 95% CI 0.60, 3.3; P=0.22) evaluations. This result was supported by subgroup analysis according to algorithm used. Higher accuracy for observers reported as having high experience and for those classed as ‘expert consultants’ in comparison to those considered to have less experience in dermoscopy was observed, particularly for image-based evaluations. Evidence for the effect of dermoscopy training on test accuracy was very limited but suggested associated improvements in sensitivity. Authors' conclusions: Despite the observed limitations in the evidence base, dermoscopy is a valuable tool to support the visual inspection of a suspicious skin lesion for the detection of melanoma and atypical intraepidermal melanocytic variants, particularly in referred populations and in the hands of experienced users. Data to support its use in primary care is limited however it may assist in triaging suspicious lesions for urgent referral when employed by suitably trained clinicians. Formal algorithms may be of most use for dermoscopy training purposes and for less expert observers, however reliable data comparing approaches using dermoscopy in-person are lacking

    Dermoscopy, with and without visual inspection, for the diagnosis of melanoma in adults

    Get PDF
    Background: Melanoma has one of the fastest rising incidence rates of any cancer. It accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Although history-taking and visual inspection of a suspicious lesion by a clinician are usually the first in a series of ‘tests’ to diagnose skin cancer, dermoscopy has become an important tool to assist diagnosis by specialist clinicians and is increasingly used in primary care settings. Dermoscopy is a magnification technique using visible light that allows more detailed examination of the skin compared to examination by the naked eye alone. Establishing the additive value of dermoscopy over and above visual inspection alone across a range of observers and settings is critical to understanding its contribution for the diagnosis of melanoma and to future understanding of the potential role of the growing number of other highresolution image analysis techniques. Objectives: To determine the diagnostic accuracy of dermoscopy for the detection of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants in adults, and to compare its accuracy with that of visual inspection alone. Studies were separated according to whether the diagnosis was recorded face-to-face (in-person) or based on remote (image-based) assessment. Search methods: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. Selection criteria: Studies of any design that evaluated dermoscopy in adults with lesions suspicious for melanoma, compared with a reference standard of either histological confirmation or clinical follow-up. Data on the accuracy of visual inspection, to allow comparisons of tests, was included only if reported in the included studies of dermoscopy. Data collection and analysis: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated accuracy using hierarchical summary ROC methods. Analysis of studies allowing direct comparison between tests was undertaken. To facilitate interpretation of results, we computed values of sensitivity at the point on the SROC curve with 80% fixed specificity and values of specificity with 80% fixed sensitivity. We investigated the impact of in-person test interpretation; use of a purposely developed algorithm to assist diagnosis; observer expertise; and dermoscopy training. Main results: A total of 104 study publications reporting on 103 study cohorts with 42,788 lesions (including 5700 cases) were included, providing 354 datasets for dermoscopy. The risk of bias was mainly low for the index test and reference standard domains and mainly high or unclear for participant selection and participant flow. Concerns regarding the applicability of study findings were largely scored as ‘High’ concern in three of four domains assessed. Selective participant recruitment, lack of reproducibility of diagnostic thresholds and lack of detail on observer expertise were particularly problematic. The accuracy of dermoscopy for the detection of invasive melanoma or atypical intraepidermal melanocytic variants was reported in 86 datasets; 26 for evaluations conducted in-person (dermoscopy added to visual inspection) and 60 for image-based evaluations (diagnosis based on interpretation of dermoscopic images). Analyses of studies by prior testing revealed no obvious effect on accuracy; analyses were hampered by the lack of studies in primary care, lack of relevant information and the restricted inclusion of lesions selected for biopsy or excision. Accuracy was higher for in-person diagnosis compared to image-based evaluations (relative diagnostic odds ratio (RDOR) of 4.6; 95% CI 2.4, 9.0, P<0.001). Accuracy was compared for (a) in-person evaluations of dermoscopy (26 evaluations; 23,169 lesions and 1664 melanomas) versus visual inspection alone (13 evaluations; 6740 lesions and 459 melanomas) and for (b) image-based evaluations of dermoscopy (60 evaluations; 13,475 lesions and 2851 melanomas) versus image-based visual inspection (11 evaluations; 1740 lesions and 305 melanomas). For both comparisons, meta-analysis found dermoscopy to be more accurate than visual inspection alone, with RDORs of (a) 4.7 (95% CI: 3.0 to 7.5; P < 0.001) and (b) 5.6 (95% CI: 3.7 to 8.5; P < 0.001). These effects correspond to predicted differences in sensitivity of (a) 16% (95% CI: 8%, 23%) (92% for dermoscopy+visual inspection vs 76% for visual inspection) and (b) 35% (95% CI 24% to 46%) (81% for dermoscopy vs 47% for visual inspection) at a fixed specificity of 80%; and topredicted differences in specificity of (a) 20% (95% CI 7%, 33) (95% for dermoscopy plus visual inspection vs 75% for visual inspection) and (b) 40% (95% CI 27, 57) (82% for dermoscopy vs 42% for visual inspection) at a fixed sensitivity of 80%. Using the median prevalence of disease in each set of studies ((a) 12% for in-person and (b) 24% for image-based) for a hypothetical population of 1000 lesions, an increase in sensitivity of (a) 16% (in-person) and (b) 35% (image-based) from using dermoscopy at a fixed specificity of 80% equates to a reduction in the number of melanomas missed of (a) 19 and (b) 81 with (a) 176 and (b) 152 false positive results. An increase in specificity of (a) 20% (in-person) and (b) 40% (image-based) at a fixed sensitivity of 80% equates to a reduction in the number of unnecessary excisions from using dermoscopy of (a) 176 and (b) 304 with (a) 24 and (b) 48 melanomas missed. The use of a named or published algorithm to assist dermoscopy interpretation (as opposed to no reported algorithm or reported use of pattern analysis) had no significant impact on accuracy either for in-person (RDOR 1.4, 95% CI 0.34, 5.6; P=0.17) or image-based (RDOR 1.4, 95% CI 0.60, 3.3; P=0.22) evaluations. This result was supported by subgroup analysis according to algorithm used. Higher accuracy for observers reported as having high experience and for those classed as ‘expert consultants’ in comparison to those considered to have less experience in dermoscopy was observed, particularly for image-based evaluations. Evidence for the effect of dermoscopy training on test accuracy was very limited but suggested associated improvements in sensitivity. Authors' conclusions: Despite the observed limitations in the evidence base, dermoscopy is a valuable tool to support the visual inspection of a suspicious skin lesion for the detection of melanoma and atypical intraepidermal melanocytic variants, particularly in referred populations and in the hands of experienced users. Data to support its use in primary care is limited however it may assist in triaging suspicious lesions for urgent referral when employed by suitably trained clinicians. Formal algorithms may be of most use for dermoscopy training purposes and for less expert observers, however reliable data comparing approaches using dermoscopy in-person are lacking

    Visual inspection for the diagnosis of cutaneous melanoma in adults

    Get PDF
    Background: Melanoma has one of the fastest rising incidence rates of any cancer. It accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. History-taking and visual inspection of a suspicious lesion by a clinician is usually the first in a series of ‘tests’ to diagnose skin cancer. Establishing the accuracy of visual inspection alone is critical to understating the potential contribution of additional tests to assist in the diagnosis of melanoma. Objectives: To determine the diagnostic accuracy of visual inspection for the detection of cutaneous invasive melanoma and intraepidermal melanocytic variants in adults with limited prior testing and in those referred for further evaluation of a suspicious lesion. Studies were separated according to whether the diagnosis was recorded face-to-face (in-person) or based on remote (image-based) assessment. Search methods: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. Selection criteria: Test accuracy studies of any design that evaluated visual inspection in adults with lesions suspicious for melanoma, compared with a reference standard of, either histological confirmation or clinical follow-up. Studies reporting data for ‘clinical diagnosis’ where dermoscopy may or may not have been used were excluded. Data collection and analysis: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated summary sensitivities and specificities per algorithm and threshold using the bivariate hierarchical model. We investigated the impact of: in-person test interpretation; use of a purposely developed algorithm to assist diagnosis; and observer expertise. Main results: Forty-nine publications reporting on a total of 51 study cohorts with 34,351 lesions (including 2499 cases) were included, providing 134 datasets for visual inspection. Across almost all study quality domains, insufficient information was provided in the majority of study reports to allow the risk of bias to be judged, while concerns regarding applicability of study findings were scored as ‘High’ in three of four domains assessed. Selective participant recruitment, lack of detail regarding the threshold for deciding on a positive test result, and lack of detail on observer expertise were particularly problematic. Attempts to analyse studies by degree of prior testing were hampered by a lack of relevant information and by the restricted inclusion of lesions selected for biopsy or excision. Accuracy was generally much higher for in-person diagnosis compared to image-based evaluations (relative diagnostic odds ratio of 8.54, 95% CI 2.89, 25.3, P<0.001). Meta-analysis of in-person evaluations that could be clearly placed on the clinical pathway showed a general trade-off between sensitivity and specificity, with the highest sensitivity (92.4%, 95% CI 26.2, 99.8%) and lowest specificity (79.7%, 95% CI 73.7, 84.7%) observed in participants with limited prior testing (n = 3 datasets). Summary sensitivities were lower for those referred for specialist assessment but with much higher specificities (e.g. sensitivity 76.7% (95% CI 61.7, 87.1%) and specificity 95.7% (95% CI 89.7, 98.3%) for lesions selected for excision, n = 8 datasets). These differences may be related to differences in the spectrum of included lesions, differences in the definition of a positive test result, or to variations in observer expertise. We did not find clear evidence that accuracy is improved by the use of any algorithm to assist diagnosis in all settings. Attempts to examine the effect of observer expertise in melanoma diagnosis were hindered due to poor reporting. Authors' conclusions: Visual inspection is a fundamental component of the assessment of a suspicious skin lesion; however, the evidence suggests that melanomas will be missed if visual inspection is used on its own. The evidence to support its accuracy in the range of settings in which it is used is flawed and very poorly reported. Although published algorithms do not appear to improve accuracy, there is insufficient evidence to suggest that the ‘no algorithm’ approach should be preferred in all settings. Despite the volume of research evaluating visual inspection, further prospective evaluation of the potential added value of using established algorithms according to the prior testing or diagnostic difficulty of lesions may be warranted

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging
    • 

    corecore